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The Oak Ridge Moments Equilibrium Code (ORMEC) is an efficient computer code that 
has been developed to calculate three-dimensional MHD equilibria using the inverse spectral 
method. The fixed boundary formulation, which is based on a variational principle for the 
spectral coefficients (moments) of the cylindrical coordinates R and Z, is described and corn- 
pared with the tinite difference code BETA’ developed by Bauer, Betancourt, and Garabedian. 
Calculations for Heliotron, Wendelstein VIIA, and ATF configurations are performed to 
establish the accuracy and mesh convergence properties for the spectral method. c 1986 
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1. INTRODUCTION 

The accurate numerical determination of magnetohydrodynamic (MHD) 
equilibria in complex three-dimensional (3-D) geometries is an important aspect for 
the design and interpretation of thermonuclear confinement experiments. Plasma 
equilibria are required for stability, transport, and heating calculations, as well as 
for data analysis applications. 

Recently, there has been considerable progress in the development of accurate 
and efficient spectral methods for computing 3-D equilibria using the inverse 
representation [l-4]. Common to all the spectral approaches is a Fourier expan- 
sion for the cylindrical coordinates (R, Z) in a toroidal domain: 

R=x [R~,cos(m%-n#)+Ri,, sin(m%-n4)], 
(1) 

Z = 1 [Z;, cos(m0 - 124) + Pm,, sin(m% - nQ)]. 

Here, % is a poloidal angle, $J is the toroidal angle, and [R,,(s), Z,,(S)] are the 
“moments” of (R, Z) that are determined by Fourier analysis of the components of 
the MHD force balance equation: 

F- -JxB+Vp=O. (2) 
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Here, p =p(s) is the plasma pressure, and s labels a magnetic surface. The current is 
J = V x B. The following contravariant representation for the magnetic field B is 
used 

B=W[VsxVB-NsxVq5+VsxV1], (3) 

where W(s) is the toroidal flux derivative, z(s) is the rotational transform, and 
A.(s, 0, 4) is a stream function. 

The various existing spectral codes differ primarily in three respects: (1) the 
choice of the angle 0, which is governed by the representation in Eq. (1) and by the 
function L in Eq. (3); (2) the radial representation of the spectral equations; and (3) 
the numerical algorithm used for solving the nonlinear force equations to obtain the 
moment amplitudes. ORMEC uses a pseudo-polar angular representation for R 
and Z and solves a linear equation for the radial current to obtain 1. Solutions for 
the spectral amplitudes of R, Z, and A are obtained at discrete radial mesh points 
using a modified steepest-descent algorithm. 

Since there is a dearth of published, well-documented numerical 3-D equilibria, 
we have chosen to benchmark ORMEC by running it concurrently with the BETA 
code [S]. Several confinement geometries, together with different plasma and 
magnetic parameters, have been considered. In this way, a data base of 3-D 
numerical results has been established that may also facilitate future code documen- 
tation. 

Because BETA and ORMEC both perform the same energy minimization, the 
comparison undertaken here provides a sensitive test of the different numerical 
schemes used in these codes. BETA employs a finite difference version of the MHD 
equations. Thus, it provides a distinct measure of comparison for any spectral code. 
Convergence properties with respect to finite meshes differ in BETA and ORMEC, 
since spectral convergence in the mean is generally quite different from the 
pointwise convergence of finite differences. No mesh extrapolation scalings have 
heretofore been established for such physically important parameters as the shift or 
the elongation. 

This paper is organized as follows. In Section 2, a brief description of ORMEC is 
presented. The radial difference scheme and descent equations used in ORMEC are 
reviewed. In Section 3, the mesh and spectral convergence properties of the 
ORMEC code are established through the analysis of 2-D equilibria. In Section 4, 
the various 3-D examples used to compare ORMEC with BETA are described and 
the results of the equilibrium computations for various shear and pressure profiles 
are presented. In Section 5, the mesh convergence of several physical quantities, the 
most important being the energy and the position of the magnetic axis, is compared 
for the spectral and finite difference methods. 

The primary aim of this investigation is to establish the accuracy and con- 
vergence properties of the spectral equilibrium code ORMEC. Computational times 
are, therefore, not emphasized. Indeed, any comparison of CPU times for the spec- 
tral and finite difference codes is difficult to assess fairly, since different grids, etc., 
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are used. Generally, the computational speed of the spectral code is competitive 
with (and typically at least two to three times faster than) the BETA code when a 
prescribed error tolerance must be satisfied. 

2. ORMEC CODE DESCRIPTION 

Both the spectral method and a preliminary version of ORMEC have previously 
been described [l]. Here, some of the main numerical features of the inverse spec- 
tral method will be reviewed. New developments stimulated by experience with 3-D 
equilibrium computations will be emphasized. 

ORMEC solves a set of nonlinear elliptic partial differential equations describing 
MHD force balance by Fourier analysis of the inverse coordinates R and Z in 
terms of (0, 0, where (s, 0, [) are magnetic flux coordinates. This reduces the 
equilibrium equations to coupled, second-order ordinary differential equations for 
the moment expansion coefficients [R,,(s) and Z,,(s) in Eq. (1 )]. The cylindrical 
coordinates R and Z (with [ = 4) are augmented by a stream function 2, defined in 
Eq. (3), which assumes the role of a renormalization parameter for accelerating the 
convergence of the series representation in Eq. (1). The stream function A is deter- 
mined by J ’ Vs = 0, which yields a linear elliptic equation for 1. However, this 
equation is in general a linear combination of the force equations determining R 
and Z. This leads to an undetermined, or ill-conditioned, set of equations for the 
amplitudes of R, Z, and 1. A unique set of spectral equations results by imposing a 
set of constraints between the coefficients R,, and Z,,. In this way, the numerical 
convergence properties of the force balance equations are greatly improved. In 
practice, the L-augmented set of moment equations can become ill-conditioned for 
poloidal mode numbers [WI in Eq. (l)] as small as 2. 

2.1. Poloidal Angle Selection 

Several constraint relations between the R and Z Fourier coefficients have been 
suggested and used in the literature [l-3,6]. In the present version of ORMEC, a 
quasi-polar description [7] is used that defines a unique poloidal angle as follows: 

R = f (R& cos nd - R&, sin nd) 
?I=0 

N 

+ ,* =‘- N [RI,, cos( 0 - nq4) + Rjn sin( 8 - nq5)] + F cos 6 

Z = f (Zg cos nq5 - Z;, sin nq5) 
PI=0 

N 

+ .=7, [Z;, cos(0 - nq4) + c, sin(B - nfj)] + rsin e 
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+ f f [r;,cos(m&n#)+r;,sin(mtI-nd)]. 
,I= -Nm=3 

Here, M and N are maximum poloidal and toroidal mode numbers, respectively, 
and all the spectral amplitudes are functions of S. The m = 0 components of R and 
2 in Eq. (4) represent the axis of a polar system for each constant-s surface, and the 
m = 1 components are constrained to satisfy Z;, = R;, and Z;, = -R;,. (At s = 0, 
the curve described by the R,, and Z,, coefficients is the magnetic axis.) The m = 0 
components of ? combine with the R,, terms of R and Z to yield ellipses that, in 
general, may rotate and deform as functions of 4. The remaining m 2 3 terms that 
compose r represent perturbations of these elliptical shapes. 

The constraint between R,, and Z,,,, in Eq. (4) removes the degeneracy in the 
(R, Z, 1) system of equations. Let F, and F, be the MHD force components con- 
jugate to R and Z, respectively, which have been previously computed in Ref. [ 11. 
The forces appearing in the descent equations for Ro,, R ,“, ZOnr and Y,, can then 
be obtained from the variational principle 

6W= -j(F,SR+F,6Z)d~dOdq3 (5) 

by inserting the representation in Eq. (4) for 6R and 6Z into Eq. (5). The result is 

T = s F, exp( - ind) d0 dq5, 

Fp= (F,+iF,)exp[i(Q-nd)]dk)dd, i (6) 

f-Y=J (F, cos0+Fzsin8)exp[i(m0-nti)]dBd& 

where Q”” = (y)<, + i(F;““),y forj= R, Z, or f. Let Xl”” represent one of the moment 
amplitudes Ro,, R,,, or r,,, and let the conjugate force be denoted y. Then the 
descent equation used in ORMEC to evolve Xy is 

dX”‘” J,Fmn 
dt I’ 

Here, wd is a damping parameter chosen to approximate the time scale of the 
slowest decaying eigenmodes of F. The second-order time derivative appears in 
Eq. (7) to accelerate the temporal convergence of the descent equations when the 
operator F is stiff. The timestep At used to integrate Eq. (7) is estimated from the 
Courant-Friedrichs-Lewy condition At w As/u,. Thus, At is the time for a wave 
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moving at the Alfvtn speed uA to cross one radial mesh zone, ds. To avoid 
unnecessarily long computations, it is desirable to choose At as large as possible. 
Since At can only be estimated, a numerical instability may be excited if the chosen 
At is too large. To suppress the resulting rapid de arture from force balance, 
ORMEC monitors the transformation Jacobian ,P g, reducing At automatically 
whenever & vanishes (except at the magnetic axis). This results in a very robust 
integration scheme that does not require elaborate initial time-step estimation. 

2.2. Improved Radial Discretization 

The radial discretization of FR and F, used in ORMEC has been chosen to 
improve the accuracy of the finite difference representation of the forces that are 
computed on a fixed radial mesh. The discretization scheme was motivated by 
noting [ 1, 51 that F, and FZ are linear combinations of F, (the radial component 
of the force) and F, (tangential force component). Thus, any radial differencing 
should be consistent with this decomposition and with the differencing used for Fj.. 
(This is particularly important when the quasi-polar representation is used, since F, 
is a linear combination of F, and F,.) 

Three types of alterations have been made as compared with Ref. [ 11. Let X 
represent either R or Z. Then, the term 

@a) 

appearing in F, and F, is differenced as follows on the integer radial mesh 
(excluding the origin, s = 0): 

a 
[( 

xj+l-xj-l 
-- 

ae 2 As > I 
P’ ) 

where 

P , + l/2 - d;‘f’(h’+Zh’+‘), 

ui+ U2 
f’J= 

+ uj- 117. 

2 > 
b’. 

(8b) 

Here, u = (W/z)’ and r = ,,&/R are differenced on a half-integral radial mesh, 
where sj+ 1,2 = (j- l/2) As, and b = (&)’ IBI 2/R is differenced on the integral mesh 
for which sj = (j- 1) As. Although Eq. (8b) is a numerically conservative form, the 
X,P term is now evaluated at sj as a product of Xi and Pj, in contrast with the 
previous result where X,TP was averaged over half-integer grid points. 
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The second type of change involves representing the quantity ?= (@‘)‘/z on the 
integer mesh. Wherever 7 appears in the expressions for F, or F,, it is differenced 
as follows: 

ri=+(Ui+1,2 + uj- ‘12)(R,Z, - R,sZ”)‘. (8~) 

The final change improves the asymptotic behavior of the Jacobian (A) near 
the magnetic axis, s = 0. One should note that the moment coefficients in Eq. (4) 
have the expansions R,, = R,,(O) + O(s’), Z,, = Z,,(O) + O(s*), R,,l-~q rOI1~.~, and 
r,, 6s’ for m > 3, which are valid as s -+ 0. Thus, the quantities R, and Z,, 
evaluated at the first half-mesh point are not simply the average of their origin and 
first integer mesh values. For example, the m = 2 modes, which contribute to the 
origin forces, would be incorrectly represented this way. For X= R or Z, the half- 
mesh values of X, are written correctly as follows: 

where $ is the value of X,, excluding m = 1 harmonics, at the first integer mesh 
point from the origin. 

The increased radial resolution resulting from these modifications will be 
demonstrated in Section 3 by comparing several 2-D equilibria. 

2.3. Zero Current Algorithm 

As an alternative to flux conservation, ORMEC includes an algorithm for finding 
the rotational transform profile z(s) corresponding to an equilibrium with zero net 
toroidal current on each flux surface. The variation of the MHD energy W with 
respect to r (keeping the toroidal flux, pressure, and surface topology fixed) yields 

SW=I@‘(j,)&ds, (10) 

where (j~)~Sded~~j.V~=(2~)-*aB,ids, with BB=(2x)-*jded4B,. Here, 
27cB, is the net toroidal current enclosed by a magnetic surface. The minimum 
energy state, therefore, corresponds to B, = 0 and may be obtained from a descent 
equation [8] of the form dz/dt = -@‘(j,). In ORMEC, the zero current state is 
maintained throughout the computation by explicitly solving the linear equation 
B, = 0 for r at each time step, yielding 

(11) 

Thus, a nonzero value of I can be obtained in a zero net toroidal current plasma 
only if there are helical distortions of the flux surfaces (otherwise, 2, = gs, = 0). 
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3. TWO-DIMENSIONAL EQUILIBRIA 

In this section, several 2-D equilibria are presented to demonstrate the mesh con- 
vergence properties of ORMEC and the effects of improved radial differencing. The 
first example is the Solov’ev equilibrium [9], with exact flux surfaces described by 
x/271 = s2 = 2Z2/5 + (R* - 16)2/64. Table I compares the relative error in the 
poloidal flux, /Ax/xl, where Ax(s) = max Ix(s, 0) - ~‘1 and x(s, 0) is the numerically 
computed value of x, for the original and improved differencing schemes on a 20- 
point radial mesh using 9 poloidal modes. Both schemes yield R(0) = 4.000 for the 
magnetic axis. There is a significant reduction of the relative error for s d 0.85 with 
the improved scheme, especially near the magnetic axis. For both schemes, the 
infinite mesh value for the energy, W,, was estimated by using quadratic mesh 
extrapolation: W= W, + CC(~S)~. The results agree well with the exact value for 
y = 0, We = 61.20852... . Similarly, the value of the elongation at the origin, E(O), 
computed with the improved differencing is in good agreement with the exact value 

TABLE I 

Effect of Improved Radial Differencing on Solov’ev Equilibrium 

Original differencing Improved differencing 

s x IAXIXI x lAXhI 

5.00.10-2 
1.00~10~’ 
2.00,10-’ 
3.00~10-’ 
4.00~10~’ 
5.00.10-’ 
6.00.10-’ 
7.00~10~’ 
8.00~10-’ 
9.00, IO-’ 
1 .oo 

2.50.10-3 
l.oo~lo~* 
4.00~10-2 
9.00~10-2 
1.60. IO-’ 
2.50~10~’ 
3.60, 10 ’ 
4.90,10-’ 
6.40.10-’ 
8.10. IO-’ 
1.00 

As = 0.05 
61.19005 

1.617 

As = 0.04 
61.196707 

1.611 

As = 0.033 
61.20032 

1.606 

61.20853 
1.595 (1.581) 

2.22 10 --2 2.50, tom3 5.96. lo-“ 
1.84’ lo-’ 1.00.10~’ 3.40.10 -4 
1.23’ lo-’ 4.00~10~’ 5.14’ 10-d 
8.06’ 10 3 9.00, 10 2 5.01 10 4 
5.13.10-’ 1.60,10-’ 3.99.10-4 
3.10, 10 m3 2.50,10-’ 2.87, 10 4 
1.91’ 10 -3 3.60, 10 ~’ 2.30’ 10m4 
1.07’ 10-j 4.90.10 -’ 1.81 10 4 
5.05. 1om4 6.40.10-’ 1.25.10 4 
1.94. 1om4 8.10,10-’ 8.60.10-5 
1.02.10 -6 1 .oo 1.02.10-6 

W 61.19006 
E(O) 1.581 

W 61.196712 

E(O) 1.581 

W 61.20032 

E(O) 1.581 

W, 61.20853 

L. 1.581 
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E,=J10/2= 1.5811.... For the original scheme, E(0) extrapolates linearly with As 
to the correct value. 

The second example [lo] demonstrates the radial mesh dependence of the 
energy, magnetic axis, and the elongation for a high-beta, circular plasma. The 
plasma boundary is described by (R - 2.576)‘+ Z* = 0.25, and the equilibrium 
toroidal flux contours are shown in Fig. 1. (The contours were, however, computed 
on an equally spaced & mesh.) The pressure profile p(x) = 0.25( 1 - f)’ was fixed 
(y = 0), the q-profile is q(x) = [2/(4 - 3i)“‘] 1.325, where i = s* for s E (0, 1) and the 
actual poloidal flux is x/27c = 0.0758i. The volume average beta, (b}, was com- 
puted to be 0.205, compared with 0.196 obtained in Ref. [lo]. A total of eight 
Fourier amplitudes (m < 7) was retained. From Table II, note that the extrapolated 
values for the energy, magnetic axis position, and elongation (the latter evaluated at 
i = 0.1) are nearly identical for the original and improved differencing schemes, and 
they are in excellent agreement with those in Ref. [lo]. The value of R(0) [E(O.l)] 
converges to its infinite mesh value slightly faster using the improved (original) dif- 
ferencing, whereas the nonvariational radial force residual in the vicinity of the 
magnetic axis, F,(O), is considerably smaller for the improved scheme (which 
correctly treats the asymptotic behavior of & near the axis). Since the original 
radial differencing scheme is close to the one used in BETA [S] (see Sect. 4), this 
may clarify discrepancies between ORMEC and BETA that occur near the 
magnetic axis. 

Figure 2 shows the decrease of the rms error in the radial force balance as a 
function of increasing poloidal mode number. When too few modes are retained, 
the D-shapes of the flux surfaces shown in Fig. 1 are poorly represented, leading to 
a large deviation from force balance. The sensitivity of this rms error to the mode 
number spectrum is useful for assessing the convergence (with respect to mode 
number) of both 2-D and 3-D equilibria. 

ORNL-DWG 85-2194 FED 

FIG. 1. Toroidal flux contours for a high-p, circular plasma. 
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TABLE II 

Comparison of Radial Differencing Schemes 
for High Beta Circular Plasma 

Original differencing Improved differencing 

As = 0.05 
4.085486 
2.886 
1.938 
0.57 

As = 0.04 
4.091361 
2.889 
1.975 
0.68 

As = 0.033 
4.094580 
2.892 
2.001 
0.76 

4.101896 
2.899 
2.060 

W 4.085575 
R(O) 2.889 

E(O.l) 1.899 
F,(O) 0.012 

W 4.091410 
R(O) 2.892 

E(O.l) 1.945 
F,(O) 0.017 

W 

R(O) 
E(O.l) 

F,(O) 

W, 
RX 
EC0 

4.094610 
2.894 
1.979 
0.02 

4.101883 
2.899 
2.056 

ORNL-DWG 84C-16525 FED 
1 I / , I 

. 1 

. 

. 

. 

oool I------ 
3 4 5 6 7 B 9 

NUMBER POLOIDAL MODES 

FIG. 2. Root mean square error in radial force F, versus number of poloidal harmonics m retained in 
series for R, 2, and 1. 
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4. COMPAREON WITH BETA RESULTS: TEST CASES 

In this section, several 3-D equilibria are described that are subsequently used to 
compare the ORMEC and BETA codes. Only fixed boundary cases were analyzed. 
Although BETA is a free boundary code with a fixed boundary option, ORMEC 
has not yet been extended to solve free boundary problems. Thus, the parameter 
NVAC in BETA, which controls the vacuum computation, was always negative to 
provide a fixed plasma boundary. 

Two versions of the BETA code have been used. One is essentially that described 
in Ref. [S] with the addition of a zero current algorithm [S]. The other version 
[ 111 embodies an improved differencing scheme for the radial force equation. 
While the newer BETA code is preferable in terms of computational efficiency, the 
older version was used for most of the comparisons since the bulk of previously 
published results has been obtained with this version. (Results are close for the two 
versions.) 

4.1. Parameter Selection in the BETA Code 

For the configurations considered here, the cylindrical coordinates of the 
assumed perfectly conducting wall have the form [S] 

R(~,~)=E~~‘+~,,cosu-A~cos(u-~), 

Z(u, u) = rh sin u + A, sin(u - v), 
(12) 

where u is a poloidal variable, v = Ql.$ is the geometric toroidal angle, QL is the 
number of field periods, and 

r,, = 1 - A, cos(32.4 - v). (13) 

Here, E ~ ’ is the aspect ratio, and d, and A, are constants that respectively deter- 
mine the helical ellipticity and D-shape of the boundary. We note that the poloidal 
angle variable u is generally not the same as 8 given by the quasi-polar represen- 
tation in Eq. (4). 

When BETA is run in the flux-conserving mode, the initial pressure and iota 
profiles are specified functions of the radial coordinate j(s): 

P =po(l - k2), 

z= 10 + z,k2. 
(14) 

For all the computations considered here, ri’ = Q(s)/@ 1) = 6(s) is the normalized 
toroidal flux. The pressure profile is related to the mass by the adiabatic relation 

’ Y 
m(s)=p(s) $ , ( > (15) 

where V’ = ss du do &, 6’ = d&ids, and y = 2 was chosen. Equations (14) and (15) 
are used to initialize m(s), which is then fixed during the energy minimization. 
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When the zero toroidal current option [S] is used, the iota profile is determined 
numerically from the highest resolution case of a mesh convergence sequence. A 
spline approximation is then used to translate this I profile to coarser grids in the 
sequence. The algorithm used in BETA to obtain the net zero current state is 

(16) 

Here, Z,(S) is the total toroidal current inside the flux surface labeled by S, and the 
acceleration (a,) and descent (e,) coefficients are chosen to be a,, = 0 and e, = 1, 
respectively. The iota profile obtained from the steady-state solution of Eq. (16) 
should agree, on an infinite mesh, with that determined in the ORMEC code by 
Eq. (11). 

4.2. Grid Selection 

The choice of the radial mesh point distribution is important since convergence 
properties depend sensitively on it. In BETA, the radial zoning parameter CI relates 
the flux surface label s to the normalized toroidal flux d through the relation 
s*’ = @. The choice a = 0.5, corresponding to zoning equally spaced in the toroidal 
flux, was made for the present comparison. 

Poor convergence of the magnetic axis and helical axis has been previously 
reported [3] using a = 1 corresponding to fi radial zoning. In the following, the 
axis shift d(0) is the distance between the mean position of the magnetic axis and 
the mean geometric center of the boundary flux surface. The helical shift dTxis is the 
n = QL toroidal harmonic amplitude of the magnetic axis. Using the Heliotron con- 
figuration described in Ref. [3], we have investigated the dependence on CI of the 
convergence rates for d(0) and ATiS. As seen from Table III, there is a substantial 
change in d(0) for CI = 1.0 in going from 7 x 12* to 13 x 242 grids. However, the 
a = 0.5 sequence shows improved convergence properties. This motivates using 
CI = 0.5 in BETA (toroidal flux zoning) for the comparison with ORMEC. 

TABLE III 

Convergence Dependence on Radial Zoning 

Grid a A(O) A Z3llE 
I 

7 x 122 0.5 0.066 0.009 
7 x 122 1.0 0.026 0.034 

13 x 122 0.5 0.066 0.013 
13 x 122 0.75 0.053 0.022 
13 x 122 1.0 0.038 0.030 
13~24~ 1.0 0.033 0.036 
13x24* 0.75 0.050 0.025 
13~24~ 0.5 0.065 0.016 

* Case reported in Ref. [3], 
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Isotropic grids, N x N x N in (s, 8, [), were chosen [ 123. This defines a trajectory 
for the convergence sequence that will differ from that obtained previously [S] 
using BETA. The finest grid used for this study was N3 = 303. The convergence 
study consists of results at grids of 153, 203, 253, and 303 points. While the energy is 
found to vary quadratically with the grid size, no definite convergence laws for 
other physical quantities (e.g., shift and helical axis amplitude) have been 
established. 

In contrast, the 3-D extrapolations for ORMEC were performed on fixed 
poloidal and toroidal mode number grids. Only the radial grid size was varied. The 
number of harmonics was chosen large enough to achieve a prescribed error 
tolerance (typically, less than 1%) in the radial force balance. The different grid 
selections used for BETA and ORMEC account in part for the different mesh 
scalings reported in the following sections. 

4.3. Test Cases 

Three configurations were chosen for the comparison between ORMEC and 
BETA to demonstrate the effects of shear, aspect ratio, boundary shape, and 
pressure on plasma equilibria: 

(I ) B7A. The Wendelstein VIIA (W7A) configuration was chosen to 
reproduce its vacuum solution and to compare with an earlier study [ 131. This is a 
low-shear, large-aspect-ratio device. 

(2) Heliotron (vacuum and high-beta). This is a fixed boundary version of 
the Heliotron configuration discussed in Ref. [ 141. The aspect ratio is intermediate 
between W7A and ATF. Stable equilibria at relatively high values of beta have been 
reported. 

(3) A TF (uacuum and high-beta). This is a simplified approximation to the 
Advanced Toroidal Facility (ATF) boundary [ 151, and results have been published 
for BETA in Ref. [ 111 using this approximation. This is the lowest aspect ratio case 
under study at present, and high-beta equilibria have been found for it. The shear is 
intermediate between Heliotron and W7A, although the ATF has the largest trans- 
form per field period of the three devices considered here. 

TABLE IV 

Parameters for Test Cases 

Case QL" eh AZ’ A3 

(1) W7A vacuum 5 0.05 0.35 0.0 
(2) Heliotron 18 0.10 0.30 0.0 
(3) ATF 12 0.14 0.25 0.05 

a QL> number of field periods. 
b E, inverse aspect ratio. 
‘ d ,, helical amplitudes defined in Eqs. ( 12) and ( 13) 
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TABLE V 

Coeffcients in the Series r= c,“=, a,@-’ 

W7A vacuum Vacuum Heliotron High-8 Heliotron Vacuum ATF High-8 ATF 

aI 5.318. low’ 
a2 6.335. 1O-2 
03 -3.787.10-l 
a4 1.531 
a5 - 3.384 
a6 4.146 
a7 - 2.637 
08 6.786.10-l 

6.606 10 -’ 8.015 10-l 4.687 10 -- ’ 
-6.734.10-l - 1.170 -5.524.10-’ 

7.572 9.892 3.721 
- 1.565.10’ -3.184.10’ - 7.458 

1.606.10’ 6.394.10’ 7.353 
- 5.88 -7.395 10’ - 2.632 

4.759 10’ 
- 1.320.10’ 

7.563.10-’ 
- 1.230 

2.720 
-8.839’ 10-l 
- 1.059 10’ 

2.301. 10’ 
- 1.806. IO’ 

4.916 

The parameters characterizing the boundary for these cases are summarized in 
Table IV. For all cases, the iota profile was obtained from a 303 grid-size BETA run 
using the zero current constraint. The resulting mass and rotational transform 
profiles are shown in Figs. 3-7. [Note that m/(2n2)* is plotted.] Also shown is the 
polynomial lit to the profiles obtained for each case from the high-resolution run. 
The expansion coefficients for the iota and mass profiles are given in Tables V and 
VI, respectively. 

The equilibrium flux sufaces corresponding to the profiles in Figs. 3-7 are shown 
in Figs. 8-12. The surfaces are equally spaced in the toroidal flux, @, and were com- 
puted on a 30-point radial grid using ORMEC. The corresponding surfaces 
obtained from the finest 303 BETA grids are virtually indistinguishable for all cases. 
(The small differences in several geometric quantities are shown in Figs. 3-7.) 

5. RESULTS OF THE COMPARISON 

The results of the ORMEC-BETA comparison are now presented for the various 
configurations introduced in Section 4. In all cases, a 6 x 6 mode-number spectrum 

TABLE VI 

Coeficients in the Series m = (2?~~)~ xy=, b,&’ 

b, 
b2 
b, 
b, 
b, 
6, 
b, 
bs 

W7A vacuum Vacuum Heliotron High-8 Heliotron Vacuum ATF High+’ ATF 

4.002. 1O-2 9.998. 1O-3 4.001 5.101’ 10-x 2.042 
-7.833. 1O-2 -1.999. 1om2 - 8.086 - 1.025. lO--2 -4.108 

1.577.10-2 1.000~10~~ 5.012 5.470. 10--x 2.420 
1.064.10-’ -4.341.10-5 - 5.036 -9.774. 1o-4 - 1.841 

-2.156.10-’ 6.883. 1O-5 1.266.10’ 1.037’ 10~-3 4.083 
2.238.10-’ -2.994. 10m5 - 1.685. IO’ -3.853.10-4 -4.539 

- 1.152.10-’ 1.132.10’ 2.440 
2.322. 1O-2 - 3.025 -4.954. IO-’ 

5X1/63/2-7 



342 HIRSHMAN AND HOGAN 

TABLE VII 

BETA Results for W7A Vacuum Case with Variable I and Zero Current 

Grid A(O) AM” I W 

20’ -0.0015 0.0092 45.11453 
303 0.011 0.0052 45.11449 

Extrapolated 0.021 0.0020 45.11448 

was used in ORMEC [m = O,..., 5, n = -2Q, 3QL in Eq. (4)], and Fourier trans- 
forms were computed on a 15 x 12 (0 - 4) angular mesh. 

The results, which are discussed in detail in the following paragraphs and are 
tabulated in the Appendix, indicate nearly quadratic convergence with As for such 
quantities as the axis shift, helical shift, and energy computed from the ORMEC 
code. Except for the vacuum case, when the shifts are small (the BETA scalings 
being difficult to assess in this case), there is good agreement in these gross 
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FIG. 3. W7A vacuum profiles and radial convergence studies. (a) Mass profile (open boxes are 
obtained from BETA on a 303 grid, and the curve is a sphne tit); (b) zero current iota profile; (c) axis 
shift d(0) (solid circles are BETA data, solid boxes are ORMEC data); (d) helical axis shift A;“‘“; and (e) 
equilibrium MHD energy II’. 
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equilibrium features between the two codes. Discrepancies seem to increase as the 
boundary shape becomes more complex. 

5.1. W7A 

The W7A vacuum case illustrates the complexities associated with the zero 
current algorithm. For a sequence during which 1 is fixed at its value obtained from 
the finest grid (and subsequently interpolated to the coarser meshes), the con- 
vergence of the shift and energy is shown in Table A.l. The extrapolated values are 
obtained using quadratic extrapolation from the 253 and 303 cases. The shift d(0) 
decreases as the grid is relined, while there is a divergence away from the analytical 
result [16] A? = 0 for the helical axis shift. The analytic result for the shift is 
A(0) = 0.04, which is valid for sQL + 1. Since &QL = 0.25 in this case, the second- 
order correction is comparable to the leading-order term, and the discrepancy 
between BETA and ORMEC results for A(0) cannot be resolved using the lowest- 
order analytic predictions. 

In contrast, when the zero current option is used on each grid (thus allowing z to 
vary), the helical axis shift decreases monotonically as the mesh is refined. For the 
finest grid, z approaches the value used to obtain the results in Table A.l. Table VII 
shows the shifts and energy for this convergence sequence. Thus, two different 
extrapolation sequences (flux-conserving vs zero current) yield different values for 
A(0) and AFis using the BETA code. 

The results from ORMEC for this case when r is fixed are also given in Table A.l. 
The ORMEC results are quite close to the finest resolution BETA results even at 
coarser radial grid sizes. This is despite the fact that the extrapolated values for 
A(0) are different. 

As seen in Figs. 3c and d, the convergence properties are quite dissimilar for the 
shift and helical axis amplitude obtained from BETA. The shift appears to scale 
linearly with As, while the helical axis amplitude appears to be proportional to 
As-‘. The ORMEC results, however, depend only very weakly on the radial 
spacing. Thus, the extrapolated BETA results for A(0) and A?‘” are sensitive to the 
assumed extrapolation law, and this may account for part of the discrepancy 
between the ORMEC and BETA predictions. In contrast, the final energy is expec- 
ted to vary quadratically with As in both cases. The energy convergence is shown in 
Fig. 3e. The ORMEC- and BETA-extrapolated energies agree to six significant 
figures. 

The BETA results obtained here differ from those in Ref. [ 131. While the results 
in Ref. [ 131 correspond to a Gaussian pressure profile, this is not sufficient to 
explain the discrepancy. It is likely that the difference is due to the choice of the 
radial zoning parameter M. 

5.2. Heliotron 

Vacuum Case. Heliotron has s& = 1.8, so that the vacuum analytic shift results 
are not valid. The scaling of energy with grid size is clearly quadratic for both 
BETA and ORMEC [Fig. 4e and Table A.21, with a relative discrepancy 
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6WfWBETA=2x 1o-5. The shift and the helical axis amplitudes are shown in 
Figs. 4c and d. The mesh scaling is nearly linear in As2 for all quantities and for 
both codes. 

High-Beta Case. For the high-beta case, the axis value of beta, PO, is 0.077, with 
(P> BETA=O.O~~~ and (B)oRMEc= 0.0251. The energy convergence is quadratic. 
As seen in Fig. 5e and Table A.3, the ORMEC and BETA values for W are close: 
6W/WBETA=2X 10P5. 

The extrapolated shift and helical axis results [Figs. 5c and d] deviate by less 
than lo%, and quadratic mesh convergence for the ORMEC data is apparent. 

5.3. ATF 

Vacuum Case. The energy converges quadratically for the ATF vacuum case, 
with a relative discrepancy between BETA and ORMEC of 6 W/ WBETA = 3.7 x lop4 
[Fig. 6e and Table A.41. The extrapolated shift and helical axis values agree to 
within better than 10% [Figs. 6c and d]. 

High-Beta Case. The high-beta ATF case for which PO = 0.07 (with 
@> ~~~A=@0245 and (B)oRMEc= 0.0243) exhibits quadratic energy convergence 
[Fig. 7e and Table A.53 with a discrepancy 6 W/WBETA = 3.2 x 10e4. As for the 
vacuum case, the extrapolated shift and helical axis values for both codes are in 
good agreement [Figs. 7c and d], with the ORMEC data once again exhibiting 
quadratic mesh scaling. 
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Note that the energy deviation 6 WI WBETA is an order of magnitude larger for 
ATF than for either Heliotron or W7A (although it is still quite small). Because of 
the nonzero value of A,, the ATF boundary has additional complexity compared 
with the elliptical cases. Thus, discrepancies between different codes seem to be 
enhanced for more complex boundaries, an effect which is related to angular grid 
resolution of the boundary. 

The boundary complexity, together with finite beta, has a significant influence on 
the poloidal harmonic spectrum required in ORMEC to yield an approximate 
equilibrium with an acceptable rms force error (less than a few percent). When 
fewer than five poloidal modes are retained for the high-beta ATF, the rms force 
error exceeds 15%, even on the finest radial grids. When m 2 5, the force dis- 
crepancy drops below 2%, and the flux surfaces attain a characteristic D-shape that 

0.6 

31 
0 1 2 3 

AS’(x 1O-3l 

FIG. 13. Radial and mode number convergence studies for shift (A), elongation (E), and D-shape 
(D) for high-beta ATF. Solid circles correspond to M= 3 poloidal modes in Eq. (4); open boxes, to 
M = 4; and open circles, to M = 5. 
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is most pronounced in the cross section 4 = rr/&. The convergence of the axis shift, 
elongation, and D-shape with respect to the poloidal mode number and radial mesh 
is shown in Fig. 13. Note that the extrapolated values for A are nearly converged 
with only three poloidal modes, but elongation and D-shape require at least five 
modes to converge adequately. In all cases, the radial convergence is nearly 
quadratic. 

Thus, as the plasma pressure increases and the internal flux surface topology 
becomes more complex, the spectral code will require a broader poloidal spectrum 
to achieve an adequate representation of the force balance. Such a trend has, 
indeed, been observed. 

6. CONCLUSIONS 

The spectral inverse method has been shown to be an efficient means for com- 
puting accurate and realistic 3-D equilibria. Previous estimates [l-4] for the 
improvement in computational efficiency effected by spectral methods compared 
with difference methods ranged from one to two orders of magnitude. For complex 
boundaries, the present study finds a smaller discrepancy between the overall 
efficiency of the two inverse methods, especially when stringent error tolerances 
require the presence of many spectral modes. 

Quadratic dependence on the radial mesh spacing As of the energy, toroidal shift, 
and helical axis shift has been demonstrated for the ORMEC spectral code. Scalings 
for the axis shift and helical axis computed from BETA seem to lie between As and 
As*, as previously noted in Ref. [S], with the quadratic dependence of the energy 
emerging as the only indisputable scaling. 

APPENDIX: RESULTS OF CONVERGENCE STUDY 

TABLE A.1 

W7A Vacuum 

Grid A(O) AYS w-45 

BETA ORMEC BETA ORMEC BETA ORMEC 

153 0.027 - 0.0005 0.11451 
203 0.018 0.0125 0.0025 0.0073 0.11449 0.11449 
25’ 0.014 0.0124 0.0042 0.0073 0.11449 0.11449 
303 0.011 0.0121 0.0052 0.0075 0.11449 0.11448 

Extrapolated 0.004 0.0114 0.0075 0.0080 0.11449 0.11446 
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TABLE A.2 

Heliotron Vacuum 

Grid A(O) A aXLS 1 W-6 

BETA ORMEC BETA ORMEC BETA ORMEC 

153 - 0.0072 0.0028 0.64818 
20’ - 0.0062 -0.0132 0.003 I 0.0068 0.64044 0.63105 
253 - 0.0054 -0.0116 0.0033 0.0065 0.63671 0.63066 
30’ - 0.0048 -0.0103 0.0034 0.0063 0.63470 0.63045 

Extrapolated - 0.0034 -0.0073 0.0036 0.0058 0.63013 0.62997 

TABLE A.3 

Heliotron High-P 

Grid A(O) Aa”l 
I W-6 

BETA ORMEC BETA ORMEC BETA ORMEC 

153 0.15 - 0.028 0.81701 
203 0.177 0.128 - 0.032 - 0.024 0.80903 0.79997 
25’ 0.200 0.158 - 0.036 - 0.030 0.80515 0.79941 
303 0.218 0.183 - 0.039 - 0.036 0.80298 0.79902 

Extrapolated 0.259 0.239 - 0.046 - 0.050 0.79804 0.79813 

TABLE A.4 

ATF Vacuum 

Grid AN’) A”X’” 
I W-6 

BETA ORMEC BETA ORMEC BETA ORMEC 

153 0.205 -0.035 0.64289 - 
20’ 0.202 0.178 - 0.033 -0.019 0.63127 0.62781 
253 0.203 0.186 - 0.033 - 0.020 0.63453 0.62754 
303 0.204 0.192 -0.032 - 0.022 0.63299 0.62739 

Extrapolated 0.206 0.205 -0.030 - 0.027 0.62949 0.62705 



352 HIRSHMAN AND HOGAN 

TABLE A.5 

ATF High-P 

Grid 

15’ 
203 
253 
303 

Extrapolated 

A(O) 

BETA ORMEC 

0.361 
0.380 0.391 
0.396 0.404 
0.417 0.413 
0.465 0.433 

AY 

BETA ORMEC BETA ORMEC 

- 0.068 0.80731 
- 0.070 - 0.073 0.80148 0.7929 
- 0.074 - 0.076 0.79855 0.79206 
- 0.079 - 0.079 0.79676 0.79159 
- 0.090 - 0.086 0.79270 0.79052 

W-6 
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